Tensor LRR and Sparse Coding-Based Subspace Clustering
نویسندگان
چکیده
منابع مشابه
Sparse Subspace Clustering via Group Sparse Coding
We propose in this paper a novel sparse subspace clustering method that regularizes sparse subspace representation by exploiting the structural sharing between tasks and data points via group sparse coding. We derive simple, provably convergent, and computationally efficient algorithms for solving the proposed group formulations. We demonstrate the advantage of the framework on three challengin...
متن کاملSubspace Clustering via Graph Regularized Sparse Coding
Sparse coding has gained popularity and interest due to the benefits of dealing with sparse data, mainly space and time efficiencies. It presents itself as an optimization problem with penalties to ensure sparsity. While this approach has been studied in the literature, it has rarely been explored within the confines of clustering data. It is our belief that graph-regularized sparse coding can ...
متن کاملProvable Subspace Clustering: When LRR meets SSC
• Random Sampling: X are iid uniform from unit sphere in S`. • Random Subspace: S` are spanned by d iid uniform vectors in R. GRAPH CONNECTIVITY What about the second design objective? • Nashihatkon & Hartley nailed that connectivity is NOT a generic property for SSC in general when d ≥ 4. • What about for LRR? Assume random sampling and random subspace, we have: Proposition 1 Under independent...
متن کاملClustering Consistent Sparse Subspace Clustering
Subspace clustering is the problem of clustering data points into a union of lowdimensional linear/affine subspaces. It is the mathematical abstraction of many important problems in computer vision, image processing and machine learning. A line of recent work [4, 19, 24, 20] provided strong theoretical guarantee for sparse subspace clustering [4], the state-of-the-art algorithm for subspace clu...
متن کاملDeep Sparse Subspace Clustering
In this paper, we present a deep extension of Sparse Subspace Clustering, termed Deep Sparse Subspace Clustering (DSSC). Regularized by the unit sphere distribution assumption for the learned deep features, DSSC can infer a new data affinity matrix by simultaneously satisfying the sparsity principle of SSC and the nonlinearity given by neural networks. One of the appealing advantages brought by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2016
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2016.2553155